Exponential energy growth due to slow parameter oscillations in quantum mechanical systems
نویسندگان
چکیده
منابع مشابه
Avoiding exponential parameter growth in fuzzy systems
For standard fuzzy systems where the input membership functions are defined on a grid on the input space, and all possible combinations of rules are used, there is an exponential growth in the number of parameters of the fuzzy system as the number of input dimensions increases. This “curse of dimensionality” effect leads to problems with design of fuzzy controllers (e.g., how to tune all these ...
متن کاملPhase separation due to quantum mechanical correlations.
Can phase separation be induced by strong electron correlations? We present a theorem that affirmatively answers this question in the Falicov-Kimball model away from half filling, for any dimension. In the ground state the itinerant electrons are spatially separated from the classical particles.
متن کاملExponential energy growth in adiabatically changing Hamiltonian systems.
We show that the mixed phase space dynamics of a typical smooth Hamiltonian system universally leads to a sustained exponential growth of energy at a slow periodic variation of parameters. We build a model for this process in terms of geometric Brownian motion with a positive drift, and relate it to the steady entropy increase after each period of the parameters variation.
متن کاملExponential energy growth in a Fermi accelerator.
An unbounded energy growth of particles bouncing off two-dimensional (2D) smoothly oscillating polygons is observed. Notably, such billiards have zero Lyapunov exponents in the static case. For a special 2D polygon geometry--a rectangle with a vertically oscillating horizontal bar--we show that this energy growth is not only unbounded but also exponential in time. For the energy averaged over a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2016
ISSN: 2470-0045,2470-0053
DOI: 10.1103/physreve.93.050203